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Abstract. We consider the interaction of k-loops with an adsorption surface and prove 
that the polymer model of k-loops has exactly the Same reduced free energy 8s that for 
self-avoiding walks interacting with a surface. 

1. Introduction 

The influence of topology on the critical properties of polymers has been the subject 
of recent interest (Gaunt et al 1984, Duplantier 1986). For a general polymer network 
attached to a surface and in a number of restricted geometries, Duplantier and Saleur 
(1986) have conjectured the dependence of the critical exponent y o n  polymer topology. 
Ohno and Binder (1988) have derived a scaling theory for a polymer network by using 
the equivalence between the generating function for the number of configurations and 
the correlation function for the classical n-spin Heisenberg model in the limit n + 0. 
It is of interest to examine the effects of an interaction between an adsorption surface 
and such polymer networks. A rigorous treatment for the linear chain was provided 
by Hammersley er nl (1982), who proved that a self-avoiding walk (SAW) interacting 
with a surface with energy w undergoes a phase transition with a crossover from d- 
to (d - 1)-dimensional behaviour. In this paper we consider the interaction of k-loops 
with a surface, which can be either penetrable or impenetrable, and where d a 3  and 
k s 2 d .  A k-loop consists of k self-avoiding walks (or branches) in which the initial 
vertices of the k walks are joined together at a single vertex, hereafter referred to as 
a branch point. Similarly, the terminal vertices of the k walks are joined together at 
the other branch point. The initial and terminal vertices of a walk cannot be the same. 
A k-loop can be considered as a special case of a polymer network with a specified 
topology in which nk=2,  k > 2  and ni =0, i #  k, where nk is the number of vertices 
(branch points) with degree k (Duplantier 1986). 

In a d-dimensional hypercubic lattice, a vertex is a point in d-dimensional Euclidean 
space with integer coordinates x = (x , ,  . . . , x d )  and an n-step SAW is a sequence of 
vertices [x(O), , . . ,x(n)} with l x ( i ) -x ( i+ l ) l= l .  We define the unit vectors e ,=  
(1.0, . . . , 0), e, = (0, I , .  . . , 0), . . . , ed = (O,O,. . . , 1 )  and the unordered pair [ X I ,  x2] as 
the edge joining the two vertices xI and x,. The interaction surface is the hyperplane 
x, =O. The k-loop may be attached at the surface in two ways: the attachment can be 
at the branch point or at a vertex other than a branch point. We will refer to the point 
of attachment of a k-loop to a surface as the ‘root’. The k walks of the k-loop may 
have equal numbers of monomers (uniform k-loop) or different numbers of monomers 
(non-uniform k-loop). 
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In this paper, we mainly concentrate on uniform k-loops, which interact with the 
penetrable surface xI = 0, with the root at one of the branch points. Let 2&( k) denote 
the set of such k-loops with k n-step walks joining the two branch points and a total 
of m edges in the surface and lkn., denote the number of loops in 9n,,(k). We define 
the generating function 

kn 

LAk, w )  = X l , , ,  emu (1.1) 
m = o  

where o is the energy of interaction of the monomers of the walks with the surface. 
By using the 'squeeze law', we establish that 

"-m lim log L.(k, o) = A ( o )  (1.2) 

where A ( o )  is the reduced free energy for a SAW in terms of the number of edges of 
the SAW in the penetrabie suriace. tiammersiey et ai (i9xz) obtained the reduced free 
energy for  SAW^ by considering numbers of vertices of a SAW, rather than edges, in 
the surface. In this paper, we shall refer to such results that have been obtained by 
counting in terms of numbers of vertices (Hammersley et a1 1982, Whittington and 
Soteros 1990). We note that by following the same arguments and procedures that 
have been used to obtain results by vertex counting, one can obtain corresponding 
resuits if the counting is in ierms of numbers of edges. 

k 

where a , ,  is the number of n-step  SAW^ with m edges in the surface and A.(w) is the 
generating function (1.1) for SAW$. 

Dejinition. A, and gt are maps such that, for any x = (x,, . . . ,xi,. . . , xj, . . . , xd j, 

.f!j(x)=(xl,.. . , x j . .  . . , x i  ,...) X d )  i , j Z 2  (2.3) 

Vi .  (2.4) 

(2 .5 )  

(2.6) 

interchanges the coordinates x,, x, and g; replaces xi with -xi. These lead 

gj(x) = (XI, . . . , - Xi,. . . , xj, . . . , X d )  

j , j ( w )  = ~ ~ ~ , j ( x ~ ~ ~ ) , J , , ( x ~ i ) ) ,  . . . , J , , ( x ( n ) ~ l  

Pi( w )  = Ig,(x(O)), g M l ) ) ,  , , . , gdx(n))). 

For a sequence of vertices w = {x(O), x( I ) ,  . . . , x( n ) ) ,  
I ~ \ > l  

The 
to lemma 1 in a straightforward manner. 
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Lemma 1. (a) The mapf;,j and g, are injective. (b) If w is a given SAW, the image w' 
of w under these mappings is still a SAW and w' and w have the same number of edges 
(vertices) in the surface x, = 0. 

We define a wedge by 

w: 1 S X 2  )..., 1 S X d & , S X d  (2.7) 
and cnnsider a snw w which is cnnfined in w and sa!isfies 

<.(i) x(O)=e,+e,+. . .+ed_,+4ed (2.8) 

(ii) for x( i), 1 s i 6 n - 1 

xd ( 0 )  < xd(i) xd ( n )  (2.9) 

and 

x d - l ( i ) < x d ( i )  

(iii) for x ( n ) ,  

xd ( n  ) = xd-8 ( n ), 
An example of such a walk is given in figure 1. 

(2.10) 

(2.11) 

Lemma 2. Let Bn be the set of all such n-step walks and 91n,m the subset of 2%" that 
have m edges in the surface. We denote by b,,  the number of walks in 2%H,m and define 

MO)= C b,,e"" (2.12) 
m = o  

then 

lim n- ' logB,(o)=A(o) .  (2.13) 
"-a 

2 
Xd 

Figure 1. Example of a SAW (heavy full line) defined in (2.8)-(2.11) confined lo the wedge 
defined in (2.7). The broken lines represent the hyperplane xd., =x, and = 1. 
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Proof: It has been shown (Whittington and Soteros 1990) that SAWS confined to a 
wedge and interacting with a surface have the same reduced free energy A ( o )  as a 
SAW interacting with a surface. With this result and following the line of argument in 
Hammersley et nl (1982), other than replacing their reflection hyperplane by the 
hyperplane xd- ,+xd  =constant, we obtain (2.13). 

Dongming Zhao and T Lookman 

Let L, and L, be two fixed (d+4)-s tep SAWS defined by 

L , :  {O,e, ,e,+ed, e,+2ed,e,+3ed, e,+4ed, e ,+ed- ,+4ed, .  . _ ,  

e, + e,+. . .+ ed-, + 4ed, e,+. . . + ed-, +4ed) 
, 

(2.14) 

L,: {0 ,ed ,2ed ,ed- ,+2ed ,ed- ,+3ed ,3ed ,4ed ,ed_ ,+4ed  ,..., 
e,+. . .+ed_>+ed-,+4ed} (2.15) 

(figure 2). L,  has no edges in the surface x, = 0, while L, is totally embedded in the 
surface. These two walks intersect only at the points 0 and x(0) = e,+.  . .+ed_,+4ed.  
Concatenating L, (or L,) with one walk in 93",,, results in an (n+d+4)-s tep walk 
with m (or m + d +4) edges in the surface and the edge [0, e,] (or [0, ed]) as its first step. 

We partition 3" into subclasses by placing two walks in the same subclass if they 
have the same last vertex. With the definition of an, there are, at most, I =  
( n  + l)d-'(2n + 1 )  subclasses. In the ith subclass E : ,  we denote by 

X(n)=(x,(n),x,(n),...,Xd(n)) (2.16) 

the end vertex of all the walks. By using any two walks w ,  and w, from B;, we describe 
two constructions, which form the basis to form a k-loop. 

Figure 2. Heavy full lines represent the finite walks L ,  and L, defined in (2.14) and (2.15). 
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Construcfion 1.  We concatenate both wI and wz by the same L, ( i  = 1 or 2) and, without 
confusion, we still denote the new walks by w ,  and w z .  We reflect w, in the hyperplane 
xd = x d ( n )  to get a new walk w: such that its first (last) vertex is the reflection of the 
last (first) vertex of w2.  We delete the last edge from w, and the first edge from w ;  
and body shift w ;  in the ed direction by J steps, where J is equal to 3 or 4 so that 
each new walk obtained below can have an odd or even number of edges. By joining 
the two walks with a (J+Z)-step walk: { x ( n  - l ) , x ( n  - l ) + e d ,  x ( n  - l ) + e d  - ed - , ,  

tain a Z(n+d+4)+J-s tep walk w '  (figure 3). 
rln - I 1  I?, - 0 -1 - 1 > I I T - 1 j - d .. - 1 \I I I - 1 J l '7 i l  ...- Ah- 
A,.. ', -.LI 'd- I , . . . ,  A \ , .  ', I ," ' , C d  C d - , , A , "  L /  I ,, ' / L d r A 2 , L / , ,  nu""- 

. . . . . . . . . .  

0 2 4 6 8 10 12 14 16 18 a' Z 
Xd 

Figure 3. Example of the two walks w ,  and w; (heavy full lines) joined together by a 
5-step walk (heavy broken lines) to form a new walk w'  in construction 1. OABC encloses 
the region R in (2.18). OA is the hyperplane x d - l  =I*. AB is the hyperplane x d - !  =, rd (n)  
and BC i s  the hyperplane x , _ , + x , = 2 x d ( n ) + J .  

Construction 2. We concatenate w, and w2 by L, and similarly write them as w,  and 
w2. We define two new walks by 

wl=fd-l,d(Wi) for i = 1 and 2. (2.17) 
The new walks are confined to the wedge {x2 2 0,. . . , xd P 0, xd- ,  P x d ]  and have x( n) 
as their end vertices since x d - , ( n ) = x d ( n )  for x ( n ) .  We reflect w; in the hyperplane 
x,, = x d ( n )  to get w; and body shift it by J steps in the ed direction. Finally, we join 
thetwo walks by a J-step walk: { x ( n ) , x ( n ) + e d ,  ..., x ( n ) + ( J - l ) e , , x ; ( O ) }  toobtain 
another (2(n+d+4)+J) -s tep  walk w 2  (figure 4). 

Both w' and w2 start at the origin 0 and end at the point E = (0,. . . , 0 ,  Z x d ( n ) + J ) .  
m e  waik w i  is confined to the region 

R:  OSxZ ,..., O S x d _ , < x d ( n ) , x d - , S x d S 2 x d ( n ) f J - x , - ,  (2.18) 

while w2 is confined outside of R and they only intersect at their start and end vertices 
(figures 3 and 4). 
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Figure 4. Example showing the joining of the two walks w :  and w ;  (heavy full lines) by 
a 3-step walk (heavy broken lines) to form a new walk w2 in construction 2. 

Now we take 2k walks w,, w2,. . . , w2k from 9; and concatenate w, and w2 by L ,  
and the other 2 ( k - 1 )  walks by L,.  We write these 2k walks in pairs by 

u : = [ w , - , ,  W 2 j I  ( j = l ,  ..., k ) .  (2.19) 

We obtain w:, w: from W , ,  W, by construction 1 and w:, . . . , w: from the other k - 2  
pairs by construction 2. The k walks w:, w : ,  w : ,  . . . , w f  start at the origin 0 and 
terminate at the point E, and all of them are totally confined to the subsection: 

s,: x , 2 0 , .  . . , X d - ,  3 0 ,  x, 20. (2.20) 

s,: x 2 2 0  , . . _ ,  x d ~ , 2 0 , x d & , s o , x d 3 0 .  (2.21) 

We leave w: and w: in S, and use gd-, ~ f ~ - , + + ,  to map w: and w: into the subsection 

Then, by properly choosing k numbers i , .  < i,. <. . . < ik. and another number j from 
the set { 2 , 3 , .  . . , d - l }  ( 1  s k s  d - 2 ) ,  we construct a composite map by 

(2.22) . .  F ( i ,  .,..., I x  . , J ,  d - l ) = g , ,  :.... g , , . . ~ , d - ,  

which maps one of the k - 4  walks w:, . , . , w: into the subsection 

Sf: xi a 0, . . . , .., Y . ,  SZ 0, . ~ , .Xjk, s n, . . . , x; 3 0; (2.23) 

The new walk has [0, t;] (or [0 ,  - e j ] )  and [E, E + e , ]  (or [E, E-e,]) as its first and 
last steps respectively. The last vertex of the new walk remains at the point 
(0, 0, , . . , 2xd (n) + J )  since its coordinates are unchanged under the defined composite 
map (2.18).  The total number of subsections defined in (2.23) is 2 ( d - ” - 2 ,  which is 
not less than 2 ( d - 1 ) - 4 ( 2 k - 4 )  for d a 3 .  Each of the walks w: ,..., wi can be 
mapped into one individuai subsection. in  this way, aii of k i ( n  t d  +4j  +J-step waiks 
intersect only at their first and last vertices and form a member e of Z2( ,+d+, )+ , (k)  
(figure 5 ) .  Let w, (1s i G 2 k )  have mi edges in the surface, then e will have either 
m, +. . . + mIk  + 2 ( k  - l ) ( d  + 4 )  or m ,  + . . , + m2k + 2( k -  l ) (d  + 4 )  +Jk  edges in the sur- 
face, depending on the position of x ( n ) .  
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Figure 5. An example ofa 4-loop formed by joining the walks w:, w:,  g2(w:) and g2(w:) 
in a simple cubic lattice. 

We consider the procedure to construct e from the walks w , ,  w 2 , .  . . , w2k as a 
standard procedure which has to be followed whenever a group of 2k walks from %: 
are used to construct a k-loop. Hence, a distinct group of 2k walks will give a distinct 
k-loop. We denote by b;,m the number of walks in 3: with m edges in the surface, 
we then have 

2 k  n b;,,, 1 2 k ( n + d + d J + l k m ' +  h k ( n + d + 4 + l k  m'+Jk 
j - 1  

with m'= m,+. . . + m 2 k + 2 ( k - l ) ( d + 4 ) .  We write 

B.(w, i) = b;,, e". 
m-0  

From (2.24),  we have 

(2.24) 

(2.25) 
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where f(@) = 1 +eJkl”l) e2(k-1Kd+4)l-l . We let p = 2 k  and q=Zk(Zk-l)-’, then p-’+ 
q-’=2k-’+(2k-l)Zk-’=l.  By Holder’s inequality, we have 

Dongming Zhao and T Lookman 

I’*(zkn)’Lf(@)~,.+,+,j+,(k, 0) (2.27) 

which, combining with (2.2) and (2.13), gives (1.2) for any k s 2 ( d - 1 ) .  
The above construction gives a special polymer network, where for any vertex x 

on the loop, the coordinate x,  is between 0 and 2 x d ( n ) + J ,  the xd coordinates of the 
two branch points. Such a polymer network is termed a ‘watermelon’ and the two 
branch points are referred to as the extremes (Duplantier 1986). We shall henceforth 
refer to such a k-loop as a k-watermelon ( k s 2 ( d  - 1)). 

For k >  2(d - I ) ,  a k-loop can be constructed by joining watermelons together. We 
give an example for d = 3 and k = 2d = 6. By following the above procedure, we can 
obtain a 3-watermelon t with two of its branches confined to x , a O  and another 
confined in the closed region 

R I :  - x ~ ( ~ ) < x ~ S O  - x 2 <  x3 < 2 x 3 ( n ) +  J + x 2 .  (2.28) 

These three branches are joined together at 0 by the edges [0, e , ] ,  [O, el]  and [0, e,], 
respectively, and at E = (0, 0, 2x3(n)  + J )  by the edges [E, E + e,], [E,  E + e2] and 
[E, E - e,]. We denote it by e(e3,  e,, e,), where we put e3 at the first position to indicate 
that the two extremes are on the positive x,-axis. Now we construct four 3-watermelons 
~ , ( e 3 , e l , e ~ ) , ~ ~ ( e , , e I , e ~ ) , ~ ) ( e 3 , e ~ , e ~ )  and&(e3,el,e2)suchthatl,andt2havetheir 
two extremes at 0 and ( 0 , 0 , 2 x d ( n ) + J )  with a uniform (2(n+d+4)+J)-s tep length 
for each branch, while 1, and l+ have their two extremes at 0 and (0, 0 , 2 x d ( n ) + J ’ )  
with a uniform ( 2 ( n  + d + 4) + J’)-step length for each branch. For l, and t4, the closed 
region R, is replaced by 

RI: - x 3 ( n ) < x 2 S 0  -x2 < x3 < 2 x 3 ( n )  + J’  + x 2 .  (2.29) 

We define: 
(i) &(e3,  e , , - e 2 ) = g 2 ( t 2 ) ,  which has two branches confined to x , s O  and one 

branch confined in the closed region 

R,:  O s x 2 < x 3 ( n )  x 2 < x 3  < 2 x 3 ( n )  + J -x2.  (2.30) 

(ii) t;(-e,, -e,, e,) = g, 0 g, ~ f ~ , , ( t ~ ) ,  which has its two extremes at 0 and 

(2.31) 

(iii) &(-e,, -el ,  -e3)  = g ,  o g , ~  g30f2,3(t4). which has its two extremes at 0 and 

R4: -2x3( n )  - J ’ + x 3  < x2 < -x3 o s  X )  < x , ( n ) .  (2.32) 

We body shift e; in the -e2 direction by 2 x d ( n ) +  J’  steps and e; in the e, direction 
by 2 x d ( n ) + J  steps. The four watermelons are joined together at their branch points 
to form a network with four branch points of degree 6 at A=(O,O,O), B =  
(O,O, 2 x d ( n ) + J ) ,  C = (0, - 2 x d ( n ) - J ’ ,  2 x , ( n ) +  J )  and D = (0, - 2 x d ( n ) - J ’ ,  0). At the 
branch point B, we delete the edges [E ,  B + e , l ,  [B, B - e , ] ,  [B,  B+el l  and [B,  B+e31. 
We then join the vertices B+e2 and B + e 3  by the edges [ B + e , , B f e , + e , l  and 

(0, - 2 x d ( n ) + J ’ , 0 )  with two branches confined to x , a O  and another confined in 

R, : -2x3( n )  - J’ - x3 < x2 < X ,  -x3( n )  < X I  s 0. 

(0, - 2 x d ( n ) + J ‘ ,  0) with two branches confined to x , s O  and another confined in 
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[ B + e > + e , , B + e , ] ,  thevertices B-e ,andB-e ,  by theedges [B-e,, B-e2-e , ]  and 
[B-%-e , ,  B- e,]. We also make the same modifications at the branch point D. On 
completion, we obtain a 6-loop with its two branch points at the points A and C and 
a uniform length of 4(n + d +4) + J + J'step, which can be either odd or even by taking 
certain values for J and J ' .  

For d > 3, we note that the construction of a d-watermelon is not unique and the 
number of subsections satisfying x d _ ,  3 0 and x, 2 0 is Zd-' 2 d - 2  for d > 3 (we can 

d-watermelon !(ed, e,, . . . , which has all of its branches confined to x d - ,  3 0. 
By using four such d-watermelons and following the same procedure for d = 3, we 
obtain a 2d-loop. 

embed ! W O  b:anches indepei;den::j; in :he saiiie subsed,on). '><e can c0iis::uc: a 

* c..L̂_ _^__^  
J. "WCl ca3r3 

In section 2, the proof of (1.2) is specifically for uniform k-loops with the root at one 
ofthe branch points and interacting with a penetrable surface. As mentioned previously, 
we can also consider other cases. 

3.1. k-loop with the root at a vertex other than a branch point 

In this case, a k-loop has its root at one of its vertices other than a branch point. We 
denote by 

k n  

?;-e 
LXk,o)= 1 L, ,emw (3.1) 

the generating function for such k-loops. We note that in the previous construction 
there is a vertex with coordinates (0, 1 , .  . . , 1,4), i.e. the start vertex of a walk w in 
Sa, which is not the branch point of the k-loop. By changing the origin to this point, 
we obtain a lower bound for LL(k, w ) .  

We derive an upper bound for L'.(k, w ) .  Since the branch points of such a k-loop 
may not be in the surtace, some o i  the k branches may have no vertices in the suriace. 
We classify all such k-loops by the number of branches which have at least one vertex 
in the surface. There are k such classes. In each class, for any k-loop, if a branch of 
the k-loop has vertices in the surface, we choose one of them and consider this branch 
as a non-uniform 2-star rooted on the surface at the chosen vertex (see the appendix). 
For a branch without any vertex in the surface, we consider it as a SAW in the bulk. 
by treating each branch independentiy and summing over aii k ciasses, we obtain - 

where a, is the number of n-step walks in the bulk and SL(2, w )  is defined by (A7). 
As n + 00, we have, for a given w, 

SL(2, w )  =z exp(nA(w)+o(n)) 

(All)  and 

(3.3) 

on s exp( n~ + o ( n ) )  s exp( nA+(o)  +o( n)) S exp(nA(o) + o ( n ) )  (3.4) 
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where K is the connective constant of walks in the bulk and A'(w) is the reduced free 
energy of walks interacting with an impenetrable surface. We have used the result that, 
for any w,  K S At(w)  S A ( w )  (Hammersley et a1 1982). Hence, we have, for a given w,  

Dongming Zhao and T Lookman 

Lk( k, w )  S k exp( knA(w)+o( n)). 

Combining (2.27) and (3.5) gives 

(3.5) 

n+m lim (kn)-' log L;(kw) = A ( w ) .  (3.6) 

3.2. k-loop interacting with an  impenetrable surface 

When the interaction surface is impenetrable, a k-loop is totally confined to one side 
of the surface, say x,>O. In this case, we consider the subset 93; of W,, which is the 
set of all n-sAws that belong to ?& and satisfy 

(3.7) 

By following the steps in lemma 2, we can show that such walks have the same reduced 
free energy A + ( w )  as that in (3.4). We also restrict g, to i a 2 .  For k s 2 d - 1 ,  by 
following exactly the procedures in sections 2 and 3.1, we can show that k-loops 
interacting with an impenetrable surface have the reduced free energy Af (w) .  

For k = 2d, a k-loop can only have its root at one vertex other than a branch point. 
We define three new uniform finite-step walks L ; ,  L; and L: to replace L, and L,: 

L ; = { 3 e , , 2 e , , 2 e , + e d , e , + e d , e , , 0 ,  ed,2ed,3ed,ed_,+3e, , . .  . , e 2 + .  . .  

x , ( i )  3 0 for all i = 0, . . . , n. 

+ ed_, +3ed, e, +. . . + ed_,  + 4%) (3.8) 

L; ={3e,,  3e, +e,, 3e, +Zed, 2e, +2e,, Ze, +3ed, 3e, +3e,, 3e, +4ed, 2e,+4ed, 

e, +4ed, ded, e,-, +ded, . . . , e,+. . . +ed- ,  +4ed} (3.9) 

L; ={3e, ,4e, ,4e,+ed, .  . . , 4e,+4ed,4e,+ed-,  +4ed,. . . , 4e ,+e2+.  . .+ed_,+4ed, 

3e, + e,+.  . . + ed_, +4ed, . . . , e2 + . . . + ed-, (3.10) 

(figure 6). L{ , L; and L; only intersect at the points (3,O.. . . , 0) and x(0). By following 
the procedure in section 2 for k > 2(d - l ) ,  we obtain a k-loop which is totally confined 
to the side x,aO with the two branch points at (3 .0, .  . . ,0) and (3 ,0 , .  . . , - 2 x d ( n ) -  
J', 2 x d ( n ) + J ) .  

3.3. Non-uniform k-loops 

For k = 2, a k-loop is reduced to a polygon with two branches intersecting at 0 = 
(0, 0, . . . , 0) and E = (0, 0, , . . , ZX, (n) + J). By choosing one of the two vertices and 
following the construction given by Gaunt et a1 (1984), one can 0btain.a lower bound 
for non-uniform k-loops with either one of the two attachments. An upper bound can 
be obtained by following the procedure in section 3.1. 
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Figure 6. Three new finite walks L : ,  L; and L; defined in (3.9j.(3.11j, 

4. Summary 

We have considered the interaction between a surface and the polymer topology defined 
as k-loops, which consists of k SAWS connected together at their initial and terminal 
vertices. The k-loops may be uniform or non-uniform and may be attached to the 
surface at a branch point or at any other vertex. We have shown that the reduced free 
energy per step of the k-loops is identical to that for SAWS interacting with a surface. 
It thus follows that the critical point and crossover properties of the k-loops are 
identical to those for SAWS adsorbed to a surface. 
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Appendix. Non-uniform 2-star 

We define a non-uniform 2-star and prove that it has the same reduced free energy as 
that for a SAW interacting with a surface. In the following, we do not distinguish the 
surfaces. However, the appropriate results apply, depending on whether the surface 
is penetrable or impenetrable. 

We denote by dn the set of n-step SAWS starting at 0 and interacting with the 
surface. tfn is the subset of dH that satisfies the additional conditions 

o= x , ( O ) = x , ( n )  (Al)  
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( i =  1,. . . , n - 1). (A2) 0 = x, (0) 6 x,, ( i )  < x,, ( n )  

We define 

the generating functions fc: Vn and SI" respectively. It has been shown (Hammersley 
et al 1982) that 

(i) C.(o)C, , (o)s(n + n'+ l)C"+..(O) (A4) 

(ii) A,(o) 6 (2n +5)dt'/Z e ~ p ( c n ' / ~ + 2 l o l ) C : ~ ~ ~ ( w )  (AS) 

(iii) "-cc lim ( l / n )  log C,(o)= n-m l i m ( l / n ) l o g A . ( o ) = A ( w ) .  (A61 

We consider an n-step SAW interacting with the surface. The SAW has one of its 
vertices at 0, which may not be any of the end vertices. We call such a SAW a non-uniform 
2-star with n edges and the vertex at 0 as its branch point. Each of the two branches 
of a non-uniform 2-star is an n,-step SAW ( nj 2 0) with n, + n2 = n. Thus, a SAW starting 
at 0 is a special case of a non-uniform 2-star with only one branch. We define 

S;(2,0)= s:,, e"" (A7) 
,=O 

as the generating function for such 2-stars interacting with the surface. Then, we have 

A.(o)SS' . (Z ,  U ) .  (AS) 

SX2, ~ 1 6  Z A,,(o)A,,(o). (A9) 

By treating each branch independently, we obtain 

From (A4) and (AS), (A9) is replaced by 

s:(z, w ) ~ ( n + 1 ) [ ( 2 n , + 5 ) d + 1 / 2 e x p ( c n : / 2 + ~ l w l ) ~ : ~ ~ + , ( o ) ]  

x [(2n2+5)d+1/2 exp(~n:'~+21o1)C:/n:+~(o)I 

s (n + 1)(2n + 5 ) 2 d t ' ( 2 n  +9) exp(c'n"'+4lwl)C:l,:8(0). 

Combining (A6), (AS) and (AlO), we obtain 

lim ( 1 / n ) l o g S H ( 2 , w ) = A ( o ) .  
"-cc 
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